

cyanate ion, was evaporated to dryness, yielding 485 mg (97%) of 4, mp 149–152°.

B. In Other Solvents. The thermal stability of 3 was examined at the boiling point of common organic solvents as follows. A sample of 5 mg of 3 was heated in 1 ml of boiling solvent. At intervals of 1, 2, 5, 15, and 30 min, after adjusting the volume of the solution for evaporation, 2 drops of the solution were removed and tested for the presence of thiocyanate ion with 1 drop of 5% FeCl_3 solution. The results are summarized as follows: in methylene chloride (bp 42°), no conversion was noted after 30 min; in chloroform (bp 61°) and in methanol (bp 65°) only trace conversion of 3 to 4 was noted after 30 min; in CH_3CN (bp 81°) and in ethylene chloride (bp 83°) maximum intensity was noted after 5 min (no 3 detectable by TLC); and in dioxane (bp 102°) maximum intensity was noted after 1 min (no 3 detectable by TLC).

C. At Its Melting Point. A 5-ml beaker containing 100 mg of 3 was slowly increased in temperature on a hot stage. Samples (\sim 1 mg) were removed at 60, 80, 100, and 120° and were tested for the presence of thiocyanate ion with 5% FeCl_3 solution, all giving negative results. At 135–140°, the sample melted and was completely converted to 4 as indicated by ir, TLC, and a positive FeCl_3 test.

1-(N-Benzoylthiocarbamoyl)pyrrolidine (7). To 1.00 g (6.13 mmol) of 2 in 5 ml of CH_3CN was added dropwise with cooling and stirring 0.88 g (12.4 mmol) of pyrrolidine. The mixture was stirred in an ice bath for 0.5 hr, filtered, and washed with CH_3CN . The colorless solid was collected and recrystallized from CH_3CN to give 0.48 g (34%) of 1-(N-benzoylthiocarbamoyl)pyrrolidine as colorless needles: mp 133–134°; ir 3100 (NH), 2960 (CH), 1642 (C=O), 1603, and 1530 cm^{-1} ; NMR ($\text{DMSO}-d_6$) δ 1.98 (m, 4, 2 CCH_2), 3.67 (m, 5, 2 $\text{CH}_2\text{N} + \text{NH}$), 7.63 (m, 3, *o*- and *p*-ArH), and 8.00 (m, 2, *m*-ArH).

Anal. Calcd for $\text{C}_{12}\text{H}_{14}\text{N}_2\text{OS}$: C, 61.51; H, 6.02; N, 11.96; S, 13.68. Found: C, 61.55; H, 6.02; N, 12.06; S, 13.55.

As anticipated,⁷ the compound failed to react with ammoniacal silver nitrate solution to give a black precipitate of silver sulfide and its *S*-methyl derivative did not release methyl mercaptan on attempted hot alkaline hydrolysis.

Registry No.—1, 1779-81-3; 2, 532-55-8; 3, 55103-06-5; 4, 55103-07-6; 5, 55103-08-7; 7, 55103-09-8; 9, 29146-60-9; 10, 6558-36-7.

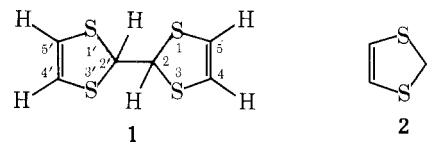
References and Notes

- (1) Part VII: D. L. Klayman and T. S. Woods, *J. Org. Chem.*, **39**, 1819 (1974).
- (2) Reference 1. Cf. ref 1–9 cited therein.
- (3) Y. Yamamoto and R. Yoda, *Annu. Rep. Kyoritsu Coll. Pharm.*, **18**, 53 (1973).
- (4) D. L. Klayman, J. J. Maul, and G. W. A. Milne, *J. Heterocycl. Chem.*, **5**, 517 (1968).
- (5) L. J. Bellamy, "The Infrared Spectra of Complex Molecules", Wiley, New York, N.Y., 1954, pp 175–198.
- (6) See the discussion in ref 4, pp 517–518. Also see chemical shift values quoted in ref 3 for compounds similar to 6.
- (7) D. L. Klayman and R. J. Shine, *Anal. Chim. Acta*, **41**, 408 (1968).
- (8) I. B. Douglass and F. B. Dains, *J. Am. Chem. Soc.*, **56**, 719 (1934).
- (9) D. T. Elmore and J. R. Ogle, *J. Chem. Soc.*, 1141 (1958).
- (10) G. J. Durant, *J. Chem. Soc. C*, 92 (1967).
- (11) J. Goerdeler and J. Neuffer, *Chem. Ber.*, **104**, 1580 (1971).
- (12) G. Barnikow and J. Bödeker, *J. Prakt. Chem.*, **313**, 1148 (1971).
- (13) Infrared spectra were taken on a Beckman IR-5 spectrophotometer in KBr pellets unless otherwise indicated, and NMR spectra were determined on a Varian Associates T-60A spectrometer. Mass spectra were obtained at 70 eV and 290° on an LKB spectrometer. Uv spectra were taken on a Beckman DB-G recording spectrophotometer. Melting points were determined on a Fisher-Johns apparatus and are uncorrected.

Reduction of the 1,3-Dithiolium Cation with Hexacarbonylvanadate(1–)

A. R. Siedle* and R. B. Johannessen

Contributions from the National Bureau of Standards
(not subject to copyright)
Inorganic Chemistry Section, National Bureau of Standards,
Washington, D.C. 20234


Received April 4, 1975

While the reduction of 1,2-dithiolium cations has been extensively studied,^{1–4} less information is available con-

cerning the isomeric 1,3-dithiolium salts. An electrochemical reduction of the 2-thioethoxy-4,5-dithiomethoxy-1,3-dithiolium cation to the orthothiooxalate has been reported.⁵ We wish to report a reductive coupling of the unsubstituted 1,3-dithiolium cation using sodium (bisdiglyme) hexacarbonylvanadate(1–) as the reducing agent. This is, to our knowledge, the first example of the use of $\text{V}(\text{CO})_6^-$ as a reducing agent for organic compounds.

When solutions of 1,3-dithiolium hexafluorophosphate⁶ and $\text{Na}(\text{diglyme})_2\text{V}(\text{CO})_6$ in acetone–tetrahydrofuran were mixed and the resulting solution diluted with water, white, crystalline 2,2'-bi(1,3-dithiolyl) (1) separated; the very air-sensitive $\text{V}(\text{CO})_6^-$ was not isolated in this procedure.⁷ The mass spectrum of 1 was characterized by strong M^+ and M^{+2} peaks. The 220-MHz ^1H NMR spectrum of 1 in acetone- d_6 consisted of two singlets at δ 4.73 and 6.20 in a 1:2 ratio. At 60 MHz, with a resolution better than 0.4 Hz, these signals showed unresolved fine structure.⁸ Examination of the ^{13}C satellites in the ^1H NMR spectrum of 1 revealed $^3J_{\text{H}(4)\text{H}(5)} = 5.4 \pm 1$ Hz and $^3J_{\text{H}(2)\text{H}(2')} = 10.5 \pm 1$ Hz. The former value is similar to $^3J_{\text{H}(3)\text{H}(4)}$ in aromatic derivatives such as pyrrole and furan.⁹ The latter coupling constant is larger than might be expected for vicinal protons but might be modified by the presence of the electro-negative sulfur atoms or by a preference by 1 for a specific conformation. The ^{13}C NMR spectrum of 1 in carbon tetrachloride consisted of two doublets at 115.6 ($J_{\text{CH}} = 184$ Hz) and 60.3 ppm ($J_{\text{CH}} = 160$ Hz) [relative to internal $(\text{CH}_3)_4\text{Si}$] in a 2:1 intensity ratio.

The formation of 1 presumably proceeds through a one-electron reduction by $\text{V}(\text{CO})_6^-$ of the 1,3-dithiolium cation to form the free radical 2. Subsequent dimerization of 2 would then lead to 1.

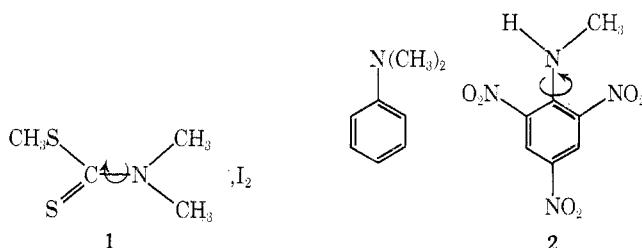
Experimental Section

A solution of 0.33 g (1.44 mmol) of $\text{C}_3\text{H}_3\text{S}_2^+\text{PF}_6^-$ in 10 ml of 1:1 acetone–tetrahydrofuran was added with stirring to 0.75 g (1.44 mmol) of $\text{Na}(\text{C}_6\text{H}_{14}\text{O}_3)_2\text{V}(\text{CO})_6$ ^{10,11} in 15 ml of the same solvent. The solution turned dark and a small amount of gas was evolved. The mixture was evaporated to ca. 5 ml on a rotary evaporator. Slow addition of water caused the product to separate as white flakes which were further purified by sublimation (90°, 10⁻³ mm). The yield was 0.09 g (59%), mp 150–151°. Anal. Calcd for $\text{C}_8\text{H}_8\text{S}_4$: C, 34.95; H, 2.91; S, 62.14. Found: C, 35.18; H, 3.04; S, 61.95. Ir (KBr) 3030 (w), 2950 (w), 1580 (w), 1525 (m), 1500 (w), 1245 (m), 1165 (s), 1075 (w), 855 (w), 780 (s), 730 (m), 695 (m), 435 (w), and 315 cm^{-1} (m); uv ($\text{C}_2\text{H}_5\text{OH}$) λ_{max} (log ϵ) 290 (3.23) and 309 nm (3.22); mass spectrum (70 eV) m/e (assignment, rel abundance) 208 ($^{12}\text{C}_6^1\text{H}_6^{32}\text{S}_3^{34}\text{S}$, 4.9), 206 (M⁺, 27), 103 (M^{+/2}, 100), 45 (HCS⁺, 25).

A mixture of 0.05 g of 2,2'-bi(1,3-dithiolyl), 0.1 g of active manganese dioxide, and 3 ml of acetonitrile was gently refluxed for 3 hr to give a yellow solution. Preparative thin layer chromatography (1:1 benzene–hexane, silica gel) afforded 0.013 g (26%) of tetrathiafulvalene, identified by its R_f and ultraviolet spectrum.

Acknowledgments. We are grateful to Dr. J. N. Lyerla and Mr. R. Bradley for obtaining the ^{13}C and ^1H satellite spectra and to Dr. A. Fatiadi for a sample of active manganese dioxide. One of us (A.R.S.) is grateful for a NRC Postdoctoral Research Associateship.

Registry No.—1, 51187-35-0; hexacarbonylvanadate(1–), 20644-87-5; 1,3-dithiolium cation, 288-75-5; 1,3-dithiolium hexafluorophosphate, 55298-73-2.


References and Notes

- C. T. Pederson, K. Bechgaard, and V. D. Parker, *J. Chem. Soc., Chem. Commun.*, 430 (1972).
- C. T. Pederson and V. D. Parker, *Tetrahedron Lett.*, **No. 9**, 767 (1972).
- C. T. Pederson and V. D. Parker, *Tetrahedron Lett.*, **No. 9**, 771 (1972).
- K. Bechgaard, V. D. Parker, and C. T. Pederson, *J. Am. Chem. Soc.*, **95**, 4373 (1973).
- P. R. Moses and J. Q. Chambers, *J. Am. Chem. Soc.*, **96**, 945 (1974).
- L. R. Melby, H. D. Hartzler, and W. A. Sheppard, *J. Org. Chem.*, **39**, 2456 (1974).
- If the reaction is run in water, **1** and $V(CO)_6$, identified by its infrared spectrum, precipitate. However, the yield of **1** under these conditions is only 25%.
- The 1H NMR spectrum of **1** should be an $A_2XX'A_2'$ pattern. The 1H NMR spectrum of $C_3H_5S_2^+PF_6^-$ in acetone shows resonances at δ 11.72 (t, 1 H, $^4J_{HCSCH} = 2$ Hz) and 9.58 (d, 2 H, $J = 2$ Hz). This suggests that J_{AX} in **1** will be ~ 2 Hz and that $J_{AA'}$ will be $\ll 2$ Hz. In fact, the ^{13}C satellite spectrum indicates that all long-range couplings are < 0.5 Hz.
- J. W. Emsley, J. Feeney, and L. N. Sutcliffe, "High Resolution Nuclear Magnetic Resonance Spectroscopy", Vol. 2, Pergamon Press, Elmsford, N.Y., 1966, pp 782-789, and references cited therein.
- This material was obtained from Pressure Chemical Co., Pittsburgh, Pa.
- Certain commercial equipment or materials are identified in this paper in order to adequately specify the experimental procedure. In no case does such identification imply recommendation or endorsement by the National Bureau of Standards nor does it imply that the material or equipment identified is necessarily the best available for the purpose.

Internal Rotation of Charge-Transfer Complexes¹F. M. Menger^{*2} and G. SaitoDepartment of Chemistry, Emory University,
Atlanta, Georgia 30322

Received January 21, 1975

We report here a study of torsional barriers to rotation about single bonds of charge-transfer complexes. Despite wide theoretical³ and biological⁴ interest in charge-transfer complexes, there have been few previous measurements of the effect of such association on internal rotation.⁵ Two systems were investigated. Internal rotation rates were determined about the central nitrogen-carbon bond of *N,N*-dimethyldithiocarbamic acid methyl ester (**1**) in the presence and absence of an acceptor, I_2 . Rotation rates were also determined about the nitrogen-aryl bond of *N*-methyl-2,4,6-trinitroaniline (**2**) in the presence and absence of a donor, *N,N*-dimethylaniline. Charge-transfer complexes of **1** with I_2 and **2** with *N,N*-dimethylaniline fall into the "n- $\alpha\sigma$ "^{3,6} and "b π - $\alpha\pi$ "³ classifications, respectively.

Rotation rates of **1** were evaluated by 1H NMR line-shape analysis of the singlet-to-doublet transition of the *N*-methyl signal. Selection of **1** for this work was based on two considerations. First, the *N*-methyl signal coalesces near room temperature (38°). This precluded the need to attain high temperatures (where complexes dissociate) or low temperatures (where evaluation of the static NMR parameters is difficult). An even more important reason for choosing **1** stemmed from the sizable association constant found for **1** and I_2 ($K_{assoc} = 222 M^{-1}$ at 25.0° in chlorobenzene). Favorable binding is necessary to obtain kinetic effects sufficiently large to interpret meaningfully. There is evidence that I_2 complexes with **1** at the thiocarbonyl site⁷.

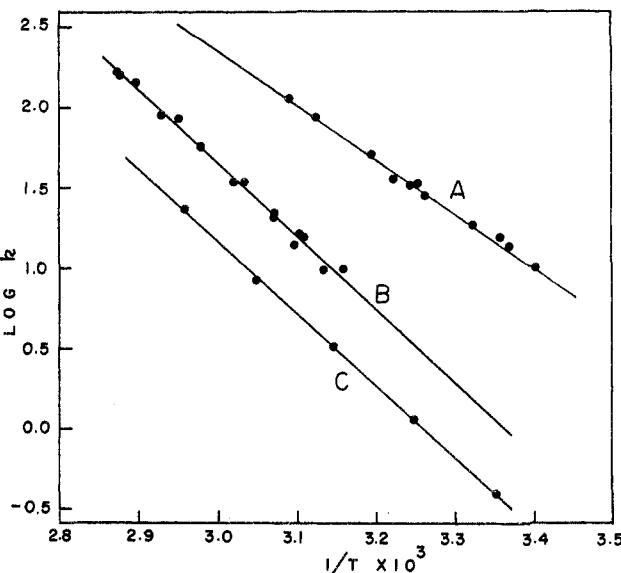
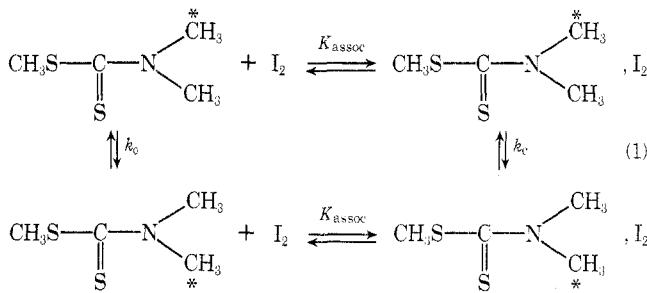



Figure 1. Line A: Arrhenius plot of $\log k_{obsd}$ (sec^{-1}) vs. the reciprocal of the temperature (K) for rotation of **1** in chlorobenzene in the absence of I_2 . Line B: Arrhenius plot of $\log k_{obsd}$ vs. $1/T$ for rotation of 0.100 M **1** and 0.208 M I_2 in chlorobenzene. Line C: Arrhenius plot of $\log k_c$ (see eq 1) vs. $1/T$.

Rates of internal rotation of 0.100 M **1** in chlorobenzene at several temperatures between 21 and 51° (Figure 1, line A) afforded the following activation parameters: $\Delta G^\ddagger_{298} = 15.88$ kcal/mol,⁸ $\Delta H^\ddagger = 15.1$ kcal/mol, and $\Delta S^\ddagger = -1.4$ eu. Doubling the concentration of **1** had no effect on the rate constants. When 0.208 M I_2 was added to the solution, the rate of internal rotation⁹ decreased (as manifested, for example, by elevation of the coalescence temperature from 38 to 61°). A plot of $\log k_{obsd}$ vs. $1/T$ is given in Figure 1, line B. The observed rate data could also be analyzed in terms of the scheme shown in eq 1. In order to extract k_c (the rate

of internal rotation of the complex itself), it was necessary to evaluate K_{assoc} using a spectrophotometric method based on the Ketelaar equation.^{10,11} K_{assoc} was found to equal $222 \pm 1 M^{-1}$ at 25.0° and $62.9 \pm 1 M^{-1}$ at 55.0°.¹² Thus, 96.1% of **1** exists in the complexed state at 0.100 M **1** and 0.208 M I_2 at 25.0°. Values of C (the concentration of complex) and k_0 (the rotation rate in the absence of I_2) were inserted into eq 2 to obtain k_c values at several temperatures.¹³ We find that k_0 is 37 times greater than k_c at 25.0°, indicating that complexation with I_2 retards rotation. An Arrhenius plot of k_c is shown in Figure 1, line C. From this plot we estimate that $\Delta G^\ddagger_{298} = 18.1 \pm 0.1$ kcal/mol; this is 2.2 kcal/mol greater than that of the uncomplexed substrate.¹⁴

$$k_{obsd} = k_0 \left(\frac{[1]_0 - [C]}{[1]_0} \right) + k_c \left(\frac{[C]}{[1]_0} \right) \quad (2)$$

Rotation rates about the bond joining the amine nitrogen to the aryl group in *N*-methyl-2,4,6-trinitroaniline (**2**) were