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cyanate ion, was evaporated to dryness, yielding 485 mg (97%) of 4,
mp 149-152°.

B. In Other Solvents. The thermal stability of 3 was examined
at the boiling point of common organic solvents as follows. A sam-
ple of 5 mg of 3 was heated in 1 ml of boiling solvent. At intervals
of 1,2, 5, 15, and 30 min, after adjusting the volume of the solution
for evaporation, 2 drops of the solution were removed and tested
for the presence of thiocyanate ion with 1 drop of 5% FeCls solu-
tion. The results are summarized as follows: in methylene chloride
(bp 42°), no conversion was noted after 30 min; in chloroform (bp
61°) and in methanol (bp 65°) only trace conversion of 3 to 4 was
noted after 30 min; in CHsCN (bp 81°) and in ethylene chloride
(bp 83°) maximum intensity was noted after 5 min (no 3 detecta-
ble by TLC); and in dioxane (bp 102°) maximum intensity was
noted after 1 min (no 3 detectable by TLC).

C. At Its Melting Point. A 5-ml beaker containing 100 mg of 3
was slowly increased in temperature on a hot stage. Samples (~1
mg) were removed at 60, 80, 100, and 120° and were tested for the
presence of thiocyanate ion with 5% FeCl; solution, all giving nega-
tive results. At 135-140°, the sample melted and was completely
converted to 4 as indicated by ir, TLC, and a positive FeCls test.

1-(N-Benzoylthiocarbamoyl)pyrrolidine (7). To 1.00 g (6.13
mmol) of 2 in 5 ml of CH3CN was added dropwise with cooling and
stirring 0.88 g (12.4 mmol) of pyrrolidine. The mixture was stirred
in an ice bath for 0.5 hr, filtered, and washed with CH3CN. The
colorless solid was collected and recrystallized from CH3CN to give
0.48 g (34%) of 1-(N-benzoylthiocarbamoyl)pyrrolidine as colorless
needles: mp 133-134°; ir 3100 (NH), 2960 (CH), 1642 (C=0),
1603, and 1530 ecm~1; NMR (DMSO-dg) 4 1.93 (m, 4, 2 CCHy), 3.67
(m, 5, 2 CHyN + NH), 7.63 (m, 3, 0- and p-ArH), and 8.00 (m, 2,
m-ArH).

Anal. Caled for C12H14N2OS: C, 61.51; H, 6.02; N, 11.96; S, 13.68.
Found: C, 61.55; H, 6.02; N, 12.06; S, 13.55).

As anticipated,? the compound failed to react with ammoniacal
silver nitrate solution to give a black precipitate of silver sulfide
and its S-methyl derivative did not release methyl mercaptan on
attempted hot alkaline hydrolysis.

Registry No.—1, 1779-81-3; 2, 532-55-8; 3, 55103-06-5; 4,
55103-07-6; 5, 556103-08-7; 7, 55103-09-8; 9, 20146-60-9; 10, 6558-
36-7.
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While the reduction of 1,2-dithiolium cations has been
extensively studied,!* less information is available con-

Notes

cerning the isomeric 1,3-dithiolium salts. An electrochemi-
cal reduction of the 2-thicethoxy-4,5-dithiomethoxy-1,3-
dithiolium cation to the orthothiooxalate has been re-

- ported.> We wish to report a reductive coupling of the un-

substituted 1,3-dithiolium cation using sodium (bisdi-
glyme) hexacarbonylvanadate(1—) as the reducing agent.
This is, to our knowledge, the first example of the use of
V(CO)s™ as a reducing agent for organic compounds.

When solutions of 1,3-dithiolium hexafluorophosphate®
and Na(diglyme)oV(CO)g in acetone-tetrahydrofuran were
mixed and the resulting solution diluted with water, white,
crystalline 2,2’-bi(1,3-dithiolyl) (1) separated; the very air-
sensitive V(CO)g was not isolated in this procedure.” The
mass spectrum of 1 was characterized by strong M* and
M+/2 peaks. The 220-MHz ‘H NMR spectrum of 1 in ace-
tone-dg consisted of two singlets at § 4.73 and 6.20 in a 1:2
ratio. At 60 MHz, with a resolution better than 0.4 Hz,
these signals showed unresolved fine structure.® Examina-
tion of the 3C satellites in the 'H NMR spectrum of 1 re-
vealed *Juwne) = 5.4 £ 1 Hz and 3Jy@ue) = 105 £ 1
Hz. The former value is similar to 3Jy(syn() in aromatic de-
rivatives such as pyrrole and furan.® The latter coupling
constant is larger than might be expected for vicinal pro-
tons but might be modified by the presence of the electro-
negative sulfur atoms or by a preference by 1 for a specific
conformation. The 13C NMR spectrum of 1 in carbon tetra-
chloride consisted of two doublets at 115.6 (Jeu = 184 Hz)
and 60.3 ppm (Jcg = 160 Hz) [relative to internal
(CH3)4Si] in a 2:1 intensity ratio.

The formation of 1 presumably proceeds through a one-
electron reduction by V(CO)g™ of the 1,3-dithiolium cation
to form the free radical 2. Subsequent dimerization of 2
would then lead to 1.
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Experimental Section

A solution of 0.33 g (1.44 mmol) of C3H3Ss*PFg~ in 10 ml of 1:1
acetone-tetrahydrofuran was added with stirring to 0.75 g (1.44
mmol) of Na(CgH403)oV(CO)%1 in 15 ml of the same solvent.
The solution turned dark and a small amount of gas was evolved.
The mixture was evaporated to ca. 5 ml on a rotary evaporator.
Slow addition of water caused the product to separate as white
flakes which were further purified by sublimation (90°, 10~3mm).
The yield was 0.09 g (59%), mp 150-151°. Anal. Caled for CgHegS4:
C, 34.95; H, 2.91; S, 62.14. Found: C, 35.18; H, 3.04; S, 61.95. Ir
(KBr) 3030 (w), 2950 (w), 1580 (w), 1525 (m), 1500 (w), 1245 (m),
1165 (s), 1075 (w), 855 (w), 780 (s), 730 {m), 695 (m), 435 (w), and
315 em™! (m); uv (CoH50H) Apax (log €) 290 (3.23) and 309 nm
(8.22); mass spectrum (70 eV) m/e (assignment, rel abundance)
208 (12C¢1Hg3285%48, 4.9), 206 (M*, 27), 103 (M*/2, 100), 45
(HCSH, 25).

A mixture of 0.05 g of 2,2’-bi(1,3-dithiolyl), 0.1 g of active man-
ganese dioxide, and 3 ml of acetonitrile was gently refluxed for 3 hr
to give a yellow solution. Preparative thin layer chromatography
(1:1 benzene—hexane, silica gel) afforded 0.013 g (26%) of tetrathi-
afulvalene, identified by its Ry and ultraviolet spectrum.
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We report here a study of torsional barriers to rotation
about single bonds of charge-transfer complexes. Despite
wide theoretical® and biological® interest in charge-transfer
complexes, there have been few previous measurements of
the effect of such association on internal rotation.? Two
systems were investigated. Internal rotation rates were de-
termined about the central nitrogen-carbon bond of N,N-
dimethyldithiocarbamic acid methyl ester (1) in the pres-
ence and absence of an acceptor, Io. Rotation rates were
also determined about the nitrogen-aryl bond of N-
methyl-2,4,6-trinitroaniline (2) in the presence and absence
of a donor, N,N-dimethylaniline. Charge-transfer com-
plexes of 1 with Iy and 2 with N,N-dimethylaniline fall into
the “n-ac” 3% and “br—ar” 3 classifications, respectively.

H CH,
N(CH,); \N/
0N ) _NO,
CHS_ , CH,
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1 2

Rotation rates of 1 were evaluated by 'H NMR line-
gshape analysis of the singlet-to-doublet transition of the
N-methyl signal. Selection of 1 for this work was based on
two considerations. First, the N-methyl signal coalesces
near room temperature (38°). This precluded the need to
attain high temperatures (where complexes dissociate) or
low temperatures (where evaluation of the static NMR pa-
rameters is difficult). An even more important reason for
choosing 1 stemmed from the sizable association constant
found for 1 and Is (Kussoc = 222 M1 at 25.0° in chloroben-
zene). Favorable binding is necessary to obtain kinetic ef-
fects sufficiently large to interpret meaningfully. There is
evidence that Is complexes with 1 at the thiocarbonyl site’.
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Figure 1. Line A: Arrhenius plot of log kobsa (sec™) vs. the recip-
rocal of the temperature (K) for rotation of 1 in chlorobenzene in
the absence of Is. Line B: Arrhenius plot of log Egpeq vs. 1/T for
rotation of 0.100 M 1 and 0.208 M 15 in chlorobenzene. Line C: Ar-
rhenius plot of log k. (see eq 1) vs. 1/7.

Rates of internal rotation of 0.100 M 1 in chlorobenzene
at several temperatures between 21 and 51° (Figure 1, line
A) afforded the following activation parameters: AGlggg =
15.88 kcal/mol,® AH? = 15.1 keal/mol, and AS* = ~1.4 eu.
Doubling the concentration of 1 had no effect on the rate
constants. When 0.208 M I, was added to the solution, the
rate of internal rotation® decreased (as manifested, for ex-
ample, by elevation of the coalescence temperature from 38
to 61°). A plot of log kopsg vs. 1/T is given in Figure 1, line
B. The observed rate data could also be analyzed in terms
of the scheme shown in eq 1. In order to extract k. (the rate
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of internal rotation of the complex itself), it was necessary
to evaluate Kagsoc Using a spectrophotometric method
based on the Ketelaar equation.1®1! K, .. was found to
equal 222 £ 1 M~1 at 25.0° and 62.9 & 1 M~! at 55.0°.12
Thus, 96.1% of 1 exists in the complexed state at 0.100 M 1
and 0.208 M I at 25.0°. Values of C (the concentration of
complex) and k¢ (the rotation rate in the absence of Io)
were inserted into eq 2 to obtain k. values at several tem-
peratures.!? We find that kg is 37 times greater than k. at
25.0°, indicating that complexation with Iy retards rota-
tion. An Arrhenius plot of k. is shown in Figure 1, line C.
From this plot we estimate that AG¥zes = 18.1 + 0.1 keal/
mol; this is 2.2 kcal/mol greater than that of the uncom-
plexed substrate.1*

ovsa = kO([’lbﬁi—[C’U + kc<%ﬁ]—0> (2)

Rotation rates about the bond joining the amine nitrogen
to the aryl group in N-methyl-2,4,6-trinitroaniline (2) were



